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We consider a game problem [ 1, 21 similar in formulation to the problems in 

f3 - 51 and being a direct continuation of the results in [I?]. Two material points 
of unit mass (the first and second players) move in a three-dimensional space 

under the action of controls Fi, Fz alone. The control u = F1 is bounded in total 

momentum, while the control - c = F, is bounded in absolute value. The game 
termination set M is an arbitrary fixed point in the space of relative positions 
and velocities of the players, while the payoff is the time taken to lead a relative 

trajectory to this point. The first player minimizes this time and the second max- 
imizes it. The solution is in many respects analogous to the solution in [6] where- 
in the minimax time up to “hard” (with respect to the coordinates) and “soft” 
(with respect to the coordinates and velocities) contact of the points was deter- 
mined. In the conclusion we consider the problem of soft contact of two control- 
led points in a linear position central gravity field. In the course of solving the 

problem in the title we form a vector-valued function Q (w, p) depending upon 
the game’s position w and on a parameter p, and we divide the whole space W 
of possible positions into the regions W” and lJJO. In region H’” there exists a 

function pz (w) < 0, defined as the smallest root of the equation q (w, p) 0. 
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The first and second players’ optimal controls are formed and the minimax time 

is computed in region II”‘. In the region IT’,, where the equation q (w, p) z= 0 

either is entirely free of roots or admits of only nonnegative roots, the second 

player’s control is formed, permitting him to evade falling onto set X under any 

action by the first player. 

1. let vectors rr, r2 define the positions of points r~r, m, relative to some fixed 

coordinate system, and let two fixed vectors b and (I define the game termination set 

by the equations :lP [r, - r2 == b, rl’ - r2’ = a]. Setting x -y- rl - r2 - b, 
y = rl’ - r2’, we compose the equations of relative motion in the form 

2’ ~ !/9 ?J’ = L! -+ L’, p’ = - 1 u 1 (1.1) 

P > 07 IuI\<v (1.2) 

The last equation of system (1.1) in combination with the constraint p > 0 is equiva- 

lent to the “impulse” constraint * 

i_10 - ;c 1 u 1 dt -= p (z) > 0 (1.3) 

on the first player’s control IC . This constraint allows for jumps in the variables IV, p 

by the formulas 
!/(I) = J/ -k CL19 PC’) = P - \ 111 I > 0 (1.4) 

The vector u’. defined by a collection of vectors and numbers w == [.I., ‘i. n. 1.11, is 

called a position, but a separate notation is allotted tothe result ~(1) _ [J, $1) = ?/ + 
pi (:~i. n. l~(iJ = P - i f-h 1 (41 f h f o t e rrst player’s impulse actions. Suppose that 

the vector w(l) (t > 0) is specified as a function of time. Its initial value w (0) is 

called the position at t = 0 , while the left limit w (r - 0) of vector ~(1) is called 

the position w (7 > 0) . 
A pair of controls 7c (w, v), v (70) and the unique trajectory i(*‘t) (t > 0, (16 (~7, 

c), u (74), w (0)) corresponding to them are said to be admissible if the trajectory 

satisfies Eqs. (1.1) for almost all t, is right-continuous and satisfies constraints (1.2) for 

all t , admits of a finite number of jumps in accordance with formulas (1.4) on every 

finite interval (1 < t G< t, , and is absolutely continuous on the intervals of continuity. 

We project the vector ?J onto vector .c and onto a plane normal to 5. We obtain a 

projection !/‘x and a vector i/p and we introduce a right-hand triplet of unit basis vectors 

iCL. js. i., by the formulas ja = .r ! 1 .x 1 and ip = !/p ” 1 yp I for 1 .x ) > 0 and 
1 yp j > 0: ja -= .2: / 1 .I‘ I. j p. j-, are arbitrary for 1 .I’ 1 > 0, 1 ye 1 ~= 0. Denot- 

ing the projections of vectors onto the unit vectors by subscripts CX. 13, y we obtain the 

corollaries of Eqs. (1.1) in the form 

1 .Y 1. 7 ya, ya = II, -I- Z’, -:- i/p” i I ,r I (1.5) 

I !//? 1. 770 + 7’8 - !/a 1 !/p I )I 1 .J I, 0,’ ‘7p I !/ii ( i I .2. 1 

013 = --n, I !/I3 I i I x 1 for I .I’ I > 0, I yp j > 0. 

Equations (1.5) are preserved when ) .c 1 > 0, 1 yp I = 0 , excepting the equation for 

1 !/p 1’ which acquires the form 

/ Qj. I((/,$ -; co)‘! -I~ (I/.< -:- l‘.j)z]ll 
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We write the jump Eqs. (1.4) in the form 

&(l) = Ycz. -t P1at 1 ypfl) ] = I( 1 yp 1 A- I_Ll$ + p1y21’!z 

Since it is intuitively clear that the problem’s solution depends only on the collection 

of quantities I z 1, ?jcL, !/fi, ua, Ofi, CL, we retain the notation w for it, and only when 
1 .z: 1 -= 0 , we interpret the quantity (c as the collection of !I, n, p. 

When v > 0 we can obtain v = 1 by norming the variables, Therefore, in what 
follows we examine two cases: v = 1 and Y = 0. The possibility of step variations 
in velocity ?/ transforms set _II” into the set 

.il [ 1 z ] - 0, p >, I ?/ - a I 1 

The approach to the set 1 x: 1 = 0 at instant T > 0 is accompanied by the condition 
f/p (T) = 0 i therefore, to settle the question of belonging to set ,V it is sufficient to 
know the sign of the difference 

p - [a3 - 20, (t)qa. (T) + 

However, if 1 x (0) 1 = 0 at the initial instant, then 
to .IL? we need to know the sign of the difference p 
sider the vectors a, !I as known when / .L’ 1 = u , 

ya2 (T) 1’ 2 

to settle the question of belonging 

- I ?I - n 19 therefore, we con- 

2. In analogy with [6] we assume that there exists a certain function 1~~~ (w) < 0 
which satisfies the estimate 

Here 

a&) =z a’& -;- cl,j, 

Furthermore, let the function pO (UJ) be such 

{‘,I (1 yr‘ 1, ?/CX. 1 yp I rz 0, 

follows the equality 

12 (w, I-‘) :=: vjf? + (p - ya2) 

that from the equality 

a,, apt CL) - ?/a = r) (2.2) 

]‘I, (I r”‘l I> i/v.. 1 !/p I =: 0, %? “8, p’) - !/% == 0 (2.2) 

for any 1 x1 1 < 1 .x: 1. [i’ cc p. Then the control 

Z(1 (U’, E) := f- (PO - ?,cA@a - 1 j/p / fijf37 1~ E 14 (w, ~a) > OJ 
111 (ui, G) = -Z’, u? E II, (20, po) = OJ 

brings the trajectory onto set ,iM in time 

T, (~9 = - ) x: 1 i I 110 I (4 

In fact, at the initial instant we have the equality 

$1) = [I .i‘ 1. 1’:) (il.), 1 ,yp 1 --_ 0, il,$ OR. II’“; = p - I, (w, p,ll 

Subsequently a rectilinear uniform motion takes place in accordance with the equations 

I .% 1’ = p. (w). ?Ja* = !J ,j’ = 0, ,Ll‘ = - 1 2’ I 

and the control 11~ (u!, 2’) = - 7: is realized along this motion according to the 



constraints (2.2), (2.3). 
The question of the possibility of realizing the control rot (w, c) leads naturally to 

the problem of investigating the maximum of the function q (~7, p) in the region 
p < 0 . We obtain the expressions 

qw = (a, - I’) i 11 -k (?/a - p) I 4 - I x I 1 PZ 

q(n) = - a03 / I,” - ?J~“/z,3+2~z~/ p3<0 

for the first, q(l),and the second, ~$2) , partial derivatives of the function q (w, p) with 
respect to the variablep . These formulas show that when w E D, [ [~Z 1 > 0, 
1 no i > 0, ; & 1 > 01 there exists a unique continuously-differentiable function 
pl (ZP) < G corres~nding to the equalities 

q(L) (w, p1 (4) --= 0, 1’ (ED) TL= q (w, p1 (w)) 1 masp<Oq (10, P) 

The regions 

need a more detailed investigation. In region Ds we have the equalities 

y(1) (w, p - a, < 0) == 1 + (j/r& - pf i 1, - 1 T 1 1 P2 

g’2’ (w, p - fz, > 0) = - 1 + (y, - p) ; t, - 1 2; 1 i p2 < 0 

The following alternative is a corollary of these relations. 
The point of maximum of p1 (w} corresponds to the equation 

q(l) (WY p - a, < 0) = 1 - (.. ?la - ]I) 1 12 (U’, p) - 1 x 1 / p2 = 0 (2.4) 

if the position 
w E Ds?, = D, n {In, > 01 U In, < 0, q2 (w) = 

1 +(?/a-n,)iZ2(w,a,)-- .r in,“<Ol} 

The point of maximum of p1 (w) corresponds to the equation 

PI (4 = G. 

if the position 

ru E D,,, = D, n In, < 0, q* (20) I, 01 

The investigation in regions D3, 04 is carried out anafogously : 

GL8 

‘J(l) (WY PI - ?/a < 0) ==: (a, - 1)r) / 2, (u’, /pI) + 1 - 1 x I/ I“; == 0 (2.6) 
if the position 

w E Ds,, ==: D, n {I!/, > 01 I_, Iya < 0, qs (~4 = 

(a, - y,) i I, (w, ga) + 1 - 1 :f 1 i ,ya2 < 01) 

The point of maximum of p1 (UI) corresponds to the equation 

Pl (4 = ?/a 
if the position 

~uEEC)~,~ --- D, I? I!,, < 0, q3 (24 > 01 

(2.7) 

One of two cases is realized in region L), : 
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Thus, the function p1 (w) < 0 and the function r (ZB) = maxKO 4 (w, p) are de- 

fined by the relations $1) {w, p) = 0, (2.4) -(z. 9) in regions D,, . _ ., D,. 

3. We start on the construction of the control cO (u)) solving the problem 

r’ (20, 7.2,) (w, z’), 2*. (LO)) = min, may,, r’ (zL*, rt (W, 4, 2’ (4) 

In tbe region I) 5 [I x 1 > 0, 1, (w, p2 (w)) > 01 this construction encounters no 
difficulties and leads t13 the equation 

the computation of r’ (w, u, v) meets with difficulty, In these regions, by specifying 

the control U, V, we compute p1 (w +- Aw) by those formulas from the collection 

(1(l) (w + Aw, p1 (w + Aw)) = 0, (2.4) -(2.9), which correspond to the vector 

w _t E.Sw =-- w _t w’ (w, U, z>)!!t 

belonging to regions Dl, D2,1, . . ., D,,, , respectively. In the majority of cases the 
passage to the limit as At -+ 0 in these formulas makes it possible to compute pr’ (W, 

II, v)_ In those cases when the derivative pl’ (v, IC, v) becomes infinite, it is possible 
to compute p1 (w + Aw), and then to compute r (w + Aw) and the derivative 
P’ (w, U, V) which proves to be finite. 

Having applied the technique described, we arrive at the expression 

210 (20) = --s]@ + 111 - s” i$ 

s= 1--i4/~ia”, WED, 

1 (4 - ~~)/Z~(W, Y&-_I”l/~& =JEf3, 

We can show that when 1 2 1 > 0 the function s (w)is contained within the limits 

1 > s 04 > - 1 and, therefore, it is always possible to take the square root, 
We extend the functions f fw) and V, (w) onto the set ill, [I z 1 .=I 0, p - f a - 

?J I< Of by the formulas 

r (w) = p - 1 a - ?J I, ZJ, (w) = ?/ - a / 1 ?J - a 1 

and we go on fo prove a lemma. 
Lemma 3.1. The function T (w) does not increase along any trajectory determ- 

ined by an admissible pair u (w, v), ZJ, (w). 

The proof of Lemma 3.1 is in many respects analogous to the proof of the correspond- 
ing lemma in f6] and, therefore, we shall not prove certain statements. restricting our- 
selves to making an appropriate reference. 
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3.1.1. Any impulse control u = pi6 does not increase function r (w) [6]. 

3.1.2. The right derivative r’ (w, IE, u,, (w)) is nonpositive ; moreover, 

r’ (ru, 12, U, (w)) < 0 w ED, (3.1) 

r’ (~7, 11 F u. (w, v), no (w)) < 0. w E (D, IJ 0,) n 1s > -11 (3.2) 

r’ (w, u. (J-C u), u, (w)) = 0 w E D, IJ D, (3.3) 

To prove estimate (3.3) we compute the derivative r’ separating it into two terms 

r.’ (w, 71, r. (w)) = Rl (w) + X, (w, u) 

R, (4 := !/a i pl + 1'1ag I yp 1 i ) J I 1, + p1?/,? /i 1 z J 1, - 1 

R, (w, 77) - 1 ~7 1 + (1'1 - y&7, i 1, - 1 gp I 7~~ i I, 

Pl I= p1 (4, 4 = 4 (UT, 14, 4 = 4 (w, Pl) 

By simple manipulations we obtain the equality 

R, (w) = p1 i I 2 1 I(\ z I i p1') (~a. - ~1) + up I yp 1 )II I, k-ya2 / 121 

Having replaced in the first term within the brackets the factor 1 .c 1 / p12 by the sum 

((a, -- PJ / 1, + (?/a - 1’1) i I ) f ,* , rom the equation q(r) (~3, 11~ (,w)) = 0 we obtain 

Rr (~1) _= 11~ [1,1, + (!I, - or) (a, - pr) + up I yp /I , 4 I J 1 < 0 c3e4) 

The last estimate is a consequence of the relations 

Pl (4 < 0, (!/a - PI) 14 + (% - PI)/ I, = Ix 1, pl” (3.5) 

In fact, the equating to zero of the left-hand side of the second relation in (3.5) is a 
consequence of the assumption that the expression within brackets in (3.4) equals zero. 

Note. Estimate (3.4) together with the estimate R, (w, U) < 0 ascertains estimate 

(3.1) when w E IIS [I ]I1 > 0, 1, > 01. In the region w E l), n [I1 = 0, I, > 01 esti- 
mate (3.1) is ascertained analoaouslv. Relations (3.2) and (3.3) were established in 
region Da,, n ]aa=y, < 0, - v I .r I /2< a,] w h en constructing 2’” (CL-). These relations 
can be verified analogously in the remaining parts of the regions (lk i! iA) (1 !s > -~ 
11, L)e u I’. 

3.1.3. Region (D, U Di) n [S = -11 is characterized by the test that any con- 

trol zr preserving the estimate r’ (w, u, 7‘(, (w)) > 0 realizes the equality r’ (u, IL 
I.,, (w)) ~~~ - 1 71 1 - u, := 0 for 11, ( 0, ua =- u., := 0. However, it can be 
shown that this control cannot be an impulse control because any impulse control 11 =m- 
--plsia diminishes function r (w). 

3.1.4. The increment Ar (w, 71, At, r,, (u;)At) <i 0 for w CZ ~11, and for small 
At. 

The proof is carried out by direct verification. This completes the proof of Lemma 
3.1. The next theorem is a corollary of lemma 3.1. 

Theorem 3.1. If w(O)CZW, = llrrl > 0, r (w) < 01 L -III,. then there 
is no admissible pair 7~ (w, F), 2'" (w) which can bring the trajectory onto set M in 
finite time. The proof is analogous to the proof of the corresponding theorem in [6](*). 

*) The continuity of the functions pr (u), r (w), p2 (w), To (ID) is estsblished analogously 
as in [6]. 
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A function ps (UJ) , the smallest root of the equation q (w, 1-1) = 0. exists in the 

reik D” [Ix 1 > 0, r (w) > 01 . 
Theorem 4.1. The pair of controls 

realize a time 
T [u’, 2;‘] = T” (UJ) ==z - 1 J’ 1 / y2 (W). 

of hitting onto the set nf. and this time satisfies the estimate 

for any admissible pairs (U (1u, ZJ), 2.’ (w)), (ICC (w, L.), 1’ (IL’)). 

The proof of Theorem 4.1 consists in proving a number of assertions listed below. 
4.1.1. Any impulse control u = ~~6 # mu“ (w) (0 < m < 1) either strictly 

diminishes the function T” (w) or transfers the position into region w, [S]. 

4.1.2. Any finite control u (w, U) with zu E [r (rl,) 1 0, 2, (w, pa) > 01 rea- 
lizes the estimate T”’ (w, u, 27” (w)) > - 1. 

Proof. For w E [r (w) > 0, I, (w, I+) > 0, II (w, pz) > 01 the derivative T’“. can 

be obtained in the form 

Y’(w, U, U0 (w)) = - 1 + T, (w) + T, (U,, U) l’t (K) = 

- 111 (w, Fo) I, (WV P2) + (aa - Pz) (Yp - Pe) -!- ap I $3 I / I-d’) 4 (w. pe): 

q’l) = q(l) (w, P2) = (a - P2) 4 (WV Pz) + (Y, - pt)il, (w, p*) - I I ( / pz2 > 0 

T, (w 4 = - [- I u L (Pz - Y,! u, / 4 (w Pz) - I Yp I up / 1, (w, P*)l , PJ4”) 

Arguments analogous to those applied in the proof of assertion 3.1.2 of Lemma 3.1 
allow us to obtain the estimate I’, (w) > II on the basis of the estimates pz < 0, q”’ 

(w, p2) \ 0. We recall that the estimate q(l) (w, pz) > 0 is a consequence of the defi- 
nition of _pz (w) as the smallest root of the equation q (LU, p) = 0. The estimates 

I”, (1~) > 0, T, (w, III > 0 complete the proof of assertion 4.1.2 for I, (ID, pz) > 0. 
The case I, (u.. p2) = 6) is proved analogously. 

4.1.3. In region 

[r (w) = 0, I, (w, pz) > 01 IJ [r (w) = I, (W, I)?) = 0, s > ---II 

any control u += U’ (u) (U # u” (W, V) = - 2)) in pair with ?? (UT) transfers the 

position into region W,. 
To prove this assertion it suffices to note that p1 (w) = p2 (w) in the region indicated 

and to remember that any control u # u” (u.) with K E [r (w) = 0, 2, (w, p,) > 0] rea- 
lizes the estimate r’ (w, U, 2 (w) = v. (w)) < 0, while any control u # - v with w E 

Do n [p (w) = 1, (w, p2) = 0, s > - 11 realizes either the estimate 7” (w, U, t‘. (4) < 
0 or the equality r’ (w, U, c,, (1~‘)) = 0, but here leads the position into the region 
D” fl Ir (14 = 0, 4 (w, PI) > 01. 

4.1.4. As was noted in paragraph 3.1.3, in the region [r (w) = I, (UT, J!~) = d, 
s= - 11 the equality r’ (w, u, Q (w)) = 0 is preserved by any control u = Uaja, 
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U, < 0, under the condition that U, is sufficiently large in absolute value, i.e. sc (w, 
u, vO) > 0. However, the realization of a control u, < 0 , being sufficiently large 
in absolute value but not having the nature of an impulse, cannot change the time 
To (w), since at the next instant t the position hits onto the set 

lr (w) = 1, (w, ps) =L- 0, s > -11 

ilssertions 4.1.1 -4.3.4 settle the proof of the first estimate in system (4.2). To 
prove the second estimate it is sufficient to determine the easily-verifiable equality 

T [u’, v”] I= 2’ [u’, v]. This completes the proof of Theorem 4.1. 

5. Let y = 0 : then we arrive at the time-optimal problem for set M. In this 
case many of the calculations can be carried out in explicit form. However, certain dif- 
ficulties arise. The first difficulty is that the function 4 (w, p) -= p - 1, (w, p) - 
la (w, p) may not admit of a stationary maximum point in the region p -< 0, while 
a second one is encountered when the stationary points fill up an entire segment a, < 
p -< ya. Denoting by pt (w) the smallest of all p for which the function q (W, p) 

reaches a maximum, and by p)e (w), as before, the smallest root of equation q (u, p) = 

0, we arrive at the results of the investigation 

w E [Ol 11 D, u Dal n hl. I z/p I + I a0 I Ya \< O] 

pt (w) =-y min (a,, ?I,), r (w) = p - 1 a, - ya l 
w E D, f) Inlirl (n,, pa) < 01 

p1 (w) ~--~ 0, 7. (4 -2 P - I a l - I Y I 
w E {iD, t.! D, u D,l n Ia, I YP I + I RI I ~a > 011 ii 

{D, n lmirl (a,, ya) > 011 

)7? (w) 5= A,-’ (A.3 - ‘p% - vd 

h, = 21i, (a, - y,) y= 2a,p2, 2h, = p2 + a? - ?I” 

h, = p2 - (a, - y,)“, J., = A,2 - pa2 

w E Ir (w) > 01 

pz (4 = min (au3 ?h) 
w E D, n Ir (w) == 0, min (a,, ga) < O] 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The control u” (w) is formed by the same rules as above. However, it should benoted 
that in the set w, from which it is impossible to hit onto set _v we have to include, 
besides the set ]r (w) < 01, also the set Do1 [r (w) = 0, p, fw) = 01. Tne proof of 
the last statement is based on the fact that the set Do1 [r (w) = p1 (w) = 01 does 

not contain set M, and any control u which shifts the position from set Do’ necessa- 
rily transfers it into the set ]r (w) < 01. 

6. The geometric interpretation of the optimal motion is as follows. Suppose that 
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at the initial instant the vectors X, IJ, a lie in one plane (see Fig. 1). The first player’s 
optimal action is the impulse u” (4 transfering the position w into the vector 

WI [] 5 1 , IJ,~ = pz (w), y!) = 0, a,, ag, p(l) = p - I u” (4 11. 

For t > 0 the second player realizes the control u,, (w) with component ns = upip -:- 

L’~I, directed arbitrarily in the plane, perpendicular to vector x, and with modulus 
1 Vg 1 = J’z’;i -I Lly’l, which follows a circle of unit radius (Fig.2). The center of this 
circle is located on the 1 I I i ya * axis at the point 

I 5 I/ y2, = (al - Y,) / 4 (WI Y,) 

The component U, follows the straight line V, = - (a, - Y,) / II (WY Y,) “- 1 5 1 / ya2. 

For t > 0 the first player, using the control u” (w, v) = -- v obstructs his opponent’s 
action and the motion takes place along the straight line z = 5 (0) with constant velo- 

city y, = pz (w) in the region [I, (w, p2) = 0 = r (w)]. 

7. We now assume that the forces fi, s = -_w?i, s of attraction to a fixed center 
o act on the points in addition to the controls, while the set M” 1.~ = rl - r2 = 
y = rl’ - r2’ = O] corresponds to a “soft” contact with respect to the coordinates 
and velocities. After a suitable norming we obtain a? = 1, and the equations of rela- 

tive motion, the set LV , and the function q (w, p) take the form 

In contrast to the preceding, we shall subsequently denote the quantity r/p2 + zz 
by 1, (w, p) and, independently of the preceding, we shall also designate regions D,,j 
of the phase space. The remaining notation is retained from the preceding. 

Computing q(l) and q(2), we obtain 

q(1) = -p i 2, (w, p) - (p - ?/a) i 4 (WI I)) - I .1: I i. [I2 (w, P) (7.1) 

q(Z) = - 1 5 ) 2 / 113 (UI, ]I) - T//p2 / I,” (w, ]I) t 2p I z 1 / 114 (w, p) (73) 

I, (w, p) -= 1/-p” t- x2, 1, (w, p) = 1/1/g f (p - ?/a)2 
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From ~$1) = 0 follows the equation 

2px 1 x 1 I 1: = -2Pl” j 113 - 33, (PI - &la) 1 u2 

therefore, at the stationary point p = p1 (w) of the function q (w, p) the second deri- 
vative q(2) has the form 

4” (WY Pl (4) = 4-l L-yf32 i is2 - t&32 / 1,s - (PI I 11 + 

(PI - Ybf I &Yl < 0 

This estimate establishes that for w E D, there exists a unique continuously-differen- 
tiable function p1 (w) corresponding to the equation q(l) (w, p) = 0 and to the equa- 
lity 

f (w) = maxp 9 (w, P) = q (w, p1 (w)) 

The derivative q(1) (w, p) is discontinuous in the region Ds [I z 1 > 0, ] yp J = O] : 
therefore, the investigation is complicated somewhat. Let us cite its result. 

Either pI (w) is determined from the equation 

q(1) (w, p - y, < 0) = -p / I, (w, p) 4- 1 - 1 2 ] / E,2 (w, p)-0 17.3) 
for 

w 65 L)s,1 = D, n I% (w) = --+a i 2, (w, YCJ + 1 - I 5 i /b2 w Yal -=c 01 
or 

Pl(4 - ?/a, U’ E &,2 = D, n lq, (24 >ool (7.4) 

After substituting pt (w) into function q (w, 11) we obtain the function r (w) for 
w e D,. This function proves to be continuously differentiable for W E u, U L)2,1 

and admits of discontinuities in the partial derivatives for w E Dz,2. By analogy with 

[6] it can be shown that the functions 17% (w) and r (wuf themseIves remain continuous. 
Let us assume that at a given position w both players use finite controls a (W, V), 

v (w). We compute the right derivative i (w, u (w, v), v (w)), and then we determine 
2’0 (w) corresponding to the equality 

min, max, f’ (w, u (w, v), 2’ (w)) = t-.’ (n*, rzo (w, v), CO (w)) 

As a result of this construction (it encounters certain difficulties in the region w E D,,,) 

we obtain 
Do (WI = (- (PI 64 - Y&a + I YB I is) i 4 (a PI (w)), (7.5) 

w E f)t u Ds,t 

vu0 (w) = --s (w)icz + r/l - a2 (w)jp, w E Dsre (‘7,6) 

s (WI -= -Ya i 2, (w, &%) - I 2 fi h2 (20, y,a) 

We can show that when w E Dz,2 the function s (w) lies within the itmits 1 > S 

(w) > -1 and, therefore, it is always possible to take the root r/l - s2 (w) . Wenote 
also that since the direction of vector j e in the plane, normal to vector 5, can be taken 
arbitrarily when w E f?,,, , the control t$ (w) has the same arbitrariness. 

We extend the functions r (w), no (w) onto the set Mt [ 1 ~1 =L: 0, P - 1 Y 1 < 
(~1 by the formulas r (w) = p - 1 y 1, z+ (w) = y / 1 y 1 and we prove a lemma. 

Lemma 7.1. The function r (u) is continuous in t at the points of continuity 
of an admissible trajectory and does not increase along the trajectory corresponding to 

any admissible pair 12 (w, v), z+, (~1). 
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7.X.1. The continuity of the functions t (EU), pi (w) in the region 1 5 f > 0 is 
proved in the same way as in [ 61. Let wi (ti) be a sequence of points of an admissible 
trajectory, converging as i -+ 00 to a position w (r) E &IX, Then the relations 

lJai (G --+ 0, yai (ti) -+ + 1 y (z) J as i--, 03 

are obvious ; the minus sign corresponds to the case ti+l > ti and the plus to the case 

t i+ 1 < ti. In both cases formulas (7. l), (7,3), (7.4) yield the equality 

lim (1 z (ti) 1 / 4 fw (td, p1 fw ~t~~)~ = 0 

and show as well that for sufficiently large i the quantities 

Pl (UT (b))t Pl tw (fi)) - ?/al (4) 

cannot have like signs ; IWO versions are possible 

0 < 1’1 (w (M) < Yai (Q > 0 

0 > PI tw (0 > Ycci (G < 0 

The latter relations establish the equality 

lim 7. (ZLQ (ii)) = p (r) - ] y (4 

and complete the proof of the first assertion of the lemma. 

7.1.2. Any impulse control u = ~,a does not increase the function r (w) [S]. 

7.1.3. The right derivative r’ (w, u (w, ZJ), 2)" (w)) < 0 for any w E [I 3 1 > 
01 and at any control u (w, v), 

We prove this assertion for w E Z?i n L&t. Computing the derivative r’ (w, 11, 2‘0 (w)i, 

we represent it as a sum of two terms 

Adding the expression pr 1 5 1 / 1, (w, pl) - pl* / h2 (w PI) to the quantity RI (w) and 
subtracting this same expression, we give the expression for Hr + Ha the form 

RI (Lo) + R3 (w, zi’o) = 1 .z 1 -l ffP1 - Y,) 15 1 2 / fl - 
p1 (PI - Y,) I x 1/ 1x2 + PIYP” / 41 -I- 
1 z 1 I- p1 I 4 - fPl - Y,J i 4 - I 22 I / VI 

E, = 1, (w, PA 44 - 4 (a PI) 

The brackets vanish by virtue of the equation q (I) (w, plf = 0. Replacing the factor of 
the second term 1 5 1 I 112, appearing in braces, by the sum - pr i E, - (pl - y,) i I, 
from the equation 4(1) (w, PI1 = 6 and making some elementary manipulations, we 
obtain 

RI (w) + R, (w, co) = f 5 1 --I i(pl - ?/,I I, ‘i PI I,] = 
- 12 (IU. PI) / E, (WV PI) < 0 

The last estimate, together with the trivial estimate R, (to, U) f 0 , establishes the esti- 
mate r’ (w, LL, (5z, 2’), 1’” (w)) < 0 for w e & U U *,I. The estimate r‘ (tu, u (10, r), 2‘0 
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(4) S 0 for w E &,I foliows from the equality 

1.’ = I -- } 24 1 -t_ s (it, -1- 2;) -- r/ 1 - s’! 1/ (up 1 ‘.$2) -+ (uu + {q 

whose proof is cumbersome and is not carried out here. We merely note one of its pro- 
perties: when IU (0) E I),,, there exists only one trajectory wp’ (i! > 0, (UC cw. 1’) := 
- t‘, r,, (UT)). w (O)), along which the equality r fluI (r)) = P (U (0)) is preserved, while 
any control 16 (w. Y) which in pair with 2~’ (~0) shifts the position from the trajectory 
tar(l) (t) leads to diminishing r (w). The diminishing of r (10) under a shift of positions 
from set M, can be verified by direct calculation ; this completes the proof of Lemma 
7.1 and allows to state a theorem. 

Theorem 7.1. If the initial position w (0) e IV0 [r (w) < 01, then any pair 
II (~2, c), z’,, fw) does not lead an admissible trajectory onto set nf in finite time [6]. 

8, In the region NJ” Ir (w) > 0, 1 :c 1 > 01 we define the function ps (w) as 
the smallest root of the equation q (w, p) = 0 and we form the controls 

4 (w, 2?) = (ps - 5Jfiia. - ( Y/P I Si R 

8 (wf -= (- (p‘,$ - ?/c&a + I 7/p I ifd / 4 (w, PJ 

P2 = P2 (4, WED," - I;v" 1-l I& (w, Pz) > 01 

lb0 (w, 21) = --27, ?I0 (w) = VIJ (w) 

wED,0 = w n fZ2 (w,p2) =Ol 

Let us clarify the structure of the region Da’. The condition 1, (w, 11s) = 0 im- 

plies the equalities / yfp / -= 0, p2 (~0) = ya- From the definition of pz (1~) as the 
smallest root of the equation Q (w, p) = (1 we have the estimate 

lim (I(r) (r-0, I’ - i/a -+ -0) == qt (fU) )_ 0 

This signifies that the equality ?la c= pr (w) = pa (w) holds according to (7.4). 
Thus, in another notation we can write Da0 - Da,? n [r (w) = 01. The latter equa- 
lity points up the possibility of forming ?‘,) (w) from formulas (7.6) for n* E Da0 E 

D Z,? l 
Theorem 8.1. The pair 71~ (w, v), 21~ (w) realizes the time 

T [I&O, $1 = .T” (w) -= Ul’Cf~ (pg (U) i 1 2” 1) -+ x / 2 

and the time T 111, V] of first hitting onto set .if, corresponding to the admissib~epair 

rt, (to, v), 17 (EC), satisfies the estimates 

T [zP (w, I>), VI .\< T I&, ~‘7 -< T In (II’, ~93 9 (II))] 

The proof of Theorem 8.1 relies on the successive proofs of the following assertions. 
8.1.1. Any impulse control u -= pt~? does not diminish the function p2 (w) (the 

function T” (w)), i.e. the estimate 

Ap = pz (w(1)) - ps (UP) > 0 (AT > 0) 

is valid ; this estimate becomes a strict equality only on a family of controls mu” (W, 

v) (0 < m < 1) rs1. 
8.1.2. The right derivative To’ (w, u, Do (w)) > -1 for IU E D1” n ]r (w) > 

01: 
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Proof. Elementary calculations allow us to obtain the equality 

TO’ = - 1 -t 2 (p, fpz - Y,) I 3 + P2‘ i I 2 I + 4) 1 II2 (4 Pz) 

where the derivative pz’ is computed from the equation 

(8.1) 

p&.$rj (w, Pz) = - I 2 I 9(‘) (w, P2) - (P% - Y,) 1 x I / 1, - P2YB” / I x I l,- (8.2) 
pslJ, i 1,2 - 52 / 1,” t P, (w, u) + P, (ru, Z‘O (w)) 

P, (w, U) = + I U I -!- (P2 - Y,) ua / 4 -t- 1 Yp I up / 4 

I”, (w, v” (w)) = (pz - Y,) uao / E, -t 1 Yp J up0 i E, = - 1 

I, = I, (w, PA 4 = 4 (4 $4, P2 = P2 (4 

The estimate q(l) (w, p) > 0 is valid for r (w) > Q ; therefore, after substituting pr’ 
from Eq. (8.2) into Eq, (8.1) we obtain 

I’i’ r-= - 1 + 1,-s (y(l))-1 (E,& [-- pz / E, - (pz - y,) / &I + 1 z J-P, (to, U)) (8.3) 

The estimate - pZ / It - (p2 - y,) / I, > 1 .z 1 / LIZ > 0 is a consequence of the esti- 

mate qcl' (w, p2) > 0, while the estimate P, (w, II) >, 0 is obvious. As a result, formula 
(8.3) completes the proof of assertion 8.1.2, 

8.1.3. As was noted at the end of the proof of Lemma 7.1, when UI (0) E ur” n 

[r- (w) == 01 h t e inclusion w(r) (t) E L>,’ n [r (w) = 01 is preserved only on trajec- 

tory w,(l), while the remaining trajectories generated by the pairs u (W, 2’1, # fw) 
either repeat the trajectory w,(l) to within a set of measure zero or take the position 
into set W,. These arguments establish the estimate T” [WI < T [u, V” (w)] for 

ui E 01” 0 lr (w) = 01. 
8.1.4. The obvrous equality T [zz”, v”] := T [IL’, u] and the continuity of the 

functions pZ (w), T” (w) on the set i? r0 u M 161 complete the proof of Theorem 

8.1. 
The geometric interpretation of the optimal motion repeats the interpretation in Sect. 

6 with the difference that the circle in Fig. 2 always has the center at the point (1, 0) 
and that the quantity 1 - s (w) is piotted along the horizontal axis instead of the quan- 

tity 12 1 / ya2 . 
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